Strong fusion control and stable equivalences
نویسندگان
چکیده
منابع مشابه
On stable homotopy equivalences
A fundamental construction in the study of stable homotopy is the free infinite loop space generated by a space X. This is the colimit QX = lim −→ ΩΣX. The i homotopy group of QX is canonically isomorphic to the i stable homotopy group of X. Thus, one may obtain stable information about X by obtaining topological results about QX. One such result is the Kahn-Priddy theorem [7]. In another direc...
متن کاملMetrizable Shape and Strong Shape Equivalences
In this paper we construct a functor Φ : proTop → proANR which extends Mardešić correspondence that assigns to every metrizable space its canonical ANR-resolution. Such a functor allows one to define the strong shape category of prospaces and, moreover, to define a class of spaces, called strongly fibered, that play for strong shape equivalences the role that ANRspaces play for ordinary shape e...
متن کاملOn iterated almost ν-stable derived equivalences
In a recent paper [5], we introduced a classes of derived equivalences called almost ν-stable derived equivalences. The most important property is that an almost ν-stable derived equivalence always induces a stable equivalence of Morita type, which generalizes a well-known result of Rickard: derived-equivalent self-injective algebras are stably equivalent of Morita type. In this paper, we shall...
متن کاملSelf-equivalences of Stable Module Categories
Let P be an abelian p-group, E a cyclic p′-group acting freely on P and k an algebraically closed field of characteristic p > 0. In this work, we prove that every self-equivalence of the stable module category of k[P oE] comes from a self-equivalence of the derived category of k[P o E]. Work of Puig and Rickard allows us to deduce that if a block B with defect group P and inertial quotient E is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2014
ISSN: 0001-8708
DOI: 10.1016/j.aim.2014.03.005